MA20218: Analysis 2A

Problem Sheet 0: Sequences and series

Real sequences and series:

1. Calculate the liminf and lim sup of the following sequences:

- $\alpha_{k}=\frac{(-1)^{k}(k+5)}{k}$;
- $\alpha_{k}=5+\frac{\sin k}{k}$.

2. Use the root test to determine whether the following real series converge:

$$
\sum_{k=1}^{\infty} \frac{4^{k}}{3^{k+2}}, \quad \sum_{k=1}^{\infty} \frac{5^{k}}{3^{k}\left(k^{4}+2\right)}, \quad \sum_{k=1}^{\infty} \frac{k^{k}}{2^{k^{2}}} .
$$

Sequences and series of functions:

a. Show that the sequence $\left(f_{k}\right)_{k}$, with $f_{k}:[0,1) \rightarrow \mathbb{R}$ defined by

$$
f_{k}(x)=k^{2} x^{k}, \quad \text { for every } x \in[0,1),
$$

converges pointwise to 0 as $k \rightarrow \infty$. What happens at $x=1$?
b. Consider the sequence of functions $\left(f_{k}\right)_{k}$, with $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{k}(x)=\frac{\sin (k x+3)}{\sqrt{k+1}}, \quad \text { for every } x \in \mathbb{R} .
$$

Show that it converges pointwise.
c. Prove that the sequence in a. does not converge uniformly in $[0,1)$.
d. Prove that the sequence in b. converges uniformly on \mathbb{R}.

